Солнечное излучение и геотермальное тепло - источники энергии для комбинированных систем энергоснабжения |
Дата размещения: 12 марта 2012
>>Допускается републикация статьи с индексируемой ссылкой - "Источник: ELport.ru" |
Осадчий Г.Б., инженер
Однако сегодня повсеместно вопросам экологии и гарантированного, доступного по цене, энергообеспечения малых поселений современной энергетикой в России, где задействованы огромные мощности и финансовые средства, не уделяется надлежащего внимания.
Деятельность многочисленных организаций топливно-энергетического комплекса (ТЭК) входит в противоречие с Законом РФ «Об энергосбережении» предписывающего, обеспечение процессов производства, преобразования, транспортирования, хранения, использования, утилизации топливно-энергетических ресурсов (ТЭР) таким образом, чтобы предотвращалось исчерпание ТЭР с учетом их разведанных запасов, рационализации способов добычи. Закон в своей основе требует снижения потерь первичных ТЭР, использования вторичных ТЭР, альтернативных топлив, и широкое вовлечение в хозяйственный оборот возобновляемых ТЭР. В то же время сегодня возможный, пусть даже на отдельных территориальных образованиях (поселениях), переход на энергоснабжение населения и производства от возобновляемых источников энергии (ВИЭ) не может быть осуществлен по ряду причин. Одной из таких причин является то, что каждое из направлений энергетики ВИЭ стремиться одно решать вопросы энергообеспечения в течение всего года, игнорируя климатические условия территорий. Особенно это касается использования энергии Солнца, ветра, гидроэнергии и геотермального тепла. Поскольку потенциал ветровой энергии по сезонам — зимний период – летний период различается не так резко, как поступление солнечного излучения, то ниже рассмотрим только возможность использования солнечного излучения и геотермального тепла как источников энергии комбинированных систем энергоснабжения в России. Проведем анализ возможностей по обеспечению потребителей дифференцированными видами энергии; летом за счет солнечного излучения, а зимой за счет глубинного тепла Земли. В таблице 1 приведены данные по инсоляции для различных регионов Земли.
Следует подчеркнуть, что данные таблицы 1 справедливы лишь для чистой атмосферы. С учетом облачности и загрязнений атмосферы промышленными отходами, характерных для многих стран мира, приведенные в таблице величины следует уменьшать. Например, для Англии 70 г. XX века, до начала борьбы за охрану окружающей среды, годовое количество солнечной радиации составляло лишь 900 кВт∙ч/м2 вместо 1700 кВт∙ч/м2. В больших же городах, как правило, величина потока солнечной радиации днем меньше чем за городом, в среднем на 10 – 20 %. А при малых высотах Солнца это различие достигает 50 %. На инсоляцию влияют также и другие факторы. Так, например, Западносибирская равнина по сравнению с Восточно-Европейской частью России получает на одних и тех же широтах больше солнечной радиации за счет увеличения прямой её составляющей вследствие меньшей повторяемости циклоидальной погоды, сопровождаемой облачностью. Конечно, кроме количественного поступления солнечной энергии, на географию ее использования, влияет эффективность применяемого энергогенерирующего оборудования. Проведенные Д.М. Чудиновым и Т.В. Щукиной [2] технико-экономические расчеты показали, что оборудование солнечного горячего водоснабжения (коллектора) при фиксированной его стоимости и с существующим уровнем эффективности успешно эксплуатируются в зоне, включающей регионы, расположенные вдоль западной и южной границы России и побережья Дальнего Востока, плоть до Магадана. При повышении КПД гелиосистем на 30 % и условии сохранения нормативного срока их окупаемости установки целесообразно применять в центральной части страны, Томской и Иркутской областях и на юге Красноярского края. Дальнейшее возрастание эффективности до 60 % обеспечит расширение области использования солнечного горячего водоснабжения, охватывая более северную зону, а также северные широты (Архангельска и Якутска).
На сегодняшнем этапе из возобновляемых и вторичных ТЭР автором предлагается использовать, солнечную энергию и теплоту неиспользованную в термодинамических циклах для разнообразного бесперебойного энергообеспечения.
По экологическим показателям, в сравнении с другими энергоисточниками солнечные прудовые установки и системы предпочтительнее, поскольку фактически не имеют никаких выбросов, а слабый нагрев грунта под прудом, при хорошей теплоизоляции, не будет намного превышать сезонных температурных колебаний от солнечной радиации.
Примерно так же обстоит дело с использованием геотермальной энергии.
Рисунок 2 – Распределение мировых запасов геотермальной энергии в зависимости от температуры источников.
Более равномерное, практически повсеместное распределение тепла непосредственно у поверхности земли на доступных глубинах до 200 метров.
Оценка приповерхностных геотермальных ресурсов для Сибири приведена в таблице 2.
Как видно из таблицы 2 при сопоставительной оценке наиболее благоприятными условиями освоения геотермальной энергии характеризуется южная часть Западной Сибири, однако температура этих ресурсов мала и для их извлечения посредством тепловых насосов требуется высоколиквидная электрическая или механическая энергии, что не всегда экономически выгодно.
где и — постоянные коэффициенты, зависящие от географического района, принимаемые по таблице 3; — глубина бурения, км; — коэффициент, зависящий от скорости бурения (при достигнутой коммерческой скорости , при увеличении скорости в 2 раза ).
При такой доле стоимости скважин в геотермальных станциях необходимо решить, как минимум, три задачи: Необходимость разработки новых методик выявления высокотемпературных геотермальных пластов связана с тем, что подземные воды вследствие большей, чем у горных пород, теплоемкости, а также значительной подвижности могут существенно изменять структуру геотермальных полей. В частности, это относится к вертикальному движению подземных вод (флюидов).
Опуская математическую постановку задачи по определению перераспределения температур в осадочном чехле, граничные условия, саму математическую модель и решение её уравнений, которые приведены в источнике [6] воспроизведем из этой книги только таблицу 4, в которой приведены результаты расчета, изменения облика геотермальных полей больших площадей при вертикальном движении подземных вод.
Как видно из таблицы 4 вертикальное движение подземных вод может в некоторых случаях полностью изменить облик геотермальных полей. Как следует из таблицы 4 (где приведены расчеты при L2 = 2700 м, q = 56,0, λ = 2 Вт/(м∙К), при скоростях фильтрации до 10 см/год и мощности отложений (через которые осуществляется восходящее движение), равное первым сотням метров, приращения температур и тепловых потоков могут стать соизмеримыми и превышать нормальные характеристики геотемпературных полей. Вертикальная миграция подземных вод дает гораздо меньший геотермический эффект в том случае, если площадь распространения незначительна. Поскольку такие вертикальные движения флюидов могут наблюдаться в областях питания или разгрузки подземных вод через слабопроницаемые отложения (за счет разницы давлений в подстилающих и перекрывающих водоносных горизонтах), по тектонически нарушенным зонам, вследствие естественной конвекции в залежах нефти и газа, то их надо выявлять и использовать. Даже при их ограниченном количестве. Использование таких месторождений залог эффективного развития геотермальной энергетики. По второй задаче.
Так как все геотермальные станции мира являются наземными, то этим обусловлен их существенный недостаток: поступая к турбинам по скважинам, пар или горячая вода за время транспортировки теряют до 30 % температуры и давления.
Рисунок 3 – Характер изменения температуры теплоносителя (флюида, подземных вод) в нагнетательной (а) и в эксплуатационной скважине (б) с увеличением времени циркуляции (t) На рисунке 3 мы имеем пример графического изображения изменения температуры теплоносителя в скважинах и тепловом коллекторе, расположенном на глубине нескольких километров. t1 (а0 – а1) и t2,3 (а0 – а2,3) — это линии (графики) изменения температуры теплоносителя при его движении в нагнетательной скважине вниз в различные периоды эксплуатации. t1 (б1,2 – в1), t2 (б1,2 – в2) и t3 (б3 – в3) — это линии изменения температуры теплоносителя при его движении в эксплуатационной скважине вверх в различные периоды эксплуатации. t0 — это график естественного изменения температуры недр по глубине, для рассматриваемого геотермального месторождения. Линия а2,3 – б3(б1,2) характеризует изменение температуры теплоносителя при его движении в коллекторе от нагнетательной к эксплуатационной скважине. В начальный период эксплуатации скважин, изменение температуры теплоносителя будет соответствовать циклу а0 – а1 – б1,2 – в1 – а0. В этот период времени массив грунта вокруг средней и нижней частей нагнетательной скважины имеет достаточно высокую температуру, и поэтому теплоноситель будет значительно нагреваться на пути к коллектору. Точка а1 смещена вправо. В то же время поскольку средний и приповерхностный массив грунта вокруг эксплуатационной скважины имеет низкую температуру, особенно у поверхности, то точка в1 смещена влево (средние и приповерхностные слои грунта охлаждая теплоноситель аккумулируют теплоту, чтобы часть её отдать потом, по мере истощения термального ресурса коллектора, теплоносителю в конце срока эксплуатации скважин). В процессе эксплуатации скважин и выработки геотермального тепла цикл изменения температуры постепенно смещается и начинает переходить через точки а0 – а2,3 – б1,2 – в2 – а0. В этот период температура на выходе из эксплуатационного коллектора максимальна, а значит эффективность работы самая высокая (если конечно дебит скважин не изменился и расход энергии на прокачку теплоносителя через коллектор резко не возрос). При завершении эксплуатационного периода цикл изменения температуры проходит по точкам а0 – а2,3 – б3 – в3 – а0. Это период быстрого расходования запасов тепла не столько коллектора, сколько тепла аккумулированного массивом грунта, охватывающего эксплуатационную скважину. Удается ли восстанавливать (пополнять) и насколько геотермальные ресурсы при перерывах в работе скважин в летний период однозначного ответа мы можем и не получить, т.к. глубинный массив грунта вокруг нагнетательной скважины однозначно будет прогреваться, а верхний остывать. В то же время нижний массив грунта вокруг эксплуатационной скважины может или повысить или вероятнее всего понизить температуру, а верхний понизить за счет рассеивания тепла в удаленные от скважины области. Здесь большое значение имеет наличие артезианских вод на глубинах 1 – 1,5 км, их температура и подвижность. Кроме того, сам коллектор отделенный от нижнего и верхнего горизонтов теплоизоляционными слоями глины может не получить ожидаемого (требуемого) количества тепла.
Приведенное на рисунке 4 распределение температур получено решением уравнения теплопроводности по неявной схеме для следующих исходных данных: глубина нейтрального слоя 25 м, температура нейтрального слоя 3 ⁰С, глубина залегания эксплуатируемого коллектора 3 км, мощность коллектора 300 м, начальная температура пород 250 ⁰С, минимальная температура ПТК (в окрестности нагнетательной скважины) 65 ⁰С, период установления минимальной температуры 1 год, продолжительность эксплуатации ПТК 10 лет, максимальная глубина расчета температур 6 км. Результаты расчета (рис. 4) показывают что, если в период эксплуатации зона температурного возмущения распространяется на сравнительно небольшое расстояние от коллектора, то в период восстановления она довольно быстро охватывает значительную толщу вмещающих пород. Однако изменения температуры приповерхностных слоев невелики и вряд ли могут представлять какую-либо опасность для окружающей среды. Очевидно, они могут заметно влиять на температуру нейтрального слоя только при сравнительно небольшой глубине залегания эксплуатируемого горизонта, что встречается редко на практике. Как видно из рисунков 3 и 4 геотермальное месторождение только условно можно считать возобновляемым источником энергии из-за того, что при его полной или частичной выработке восстановление ресурса тепла идет очень медленно, дольше жизни одного поколения, когда наиболее дорогая часть работ (пробуренные скважины) практически не имеют ликвидной стоимости. И в то же время климатические условия для ГеоЭС в средней полосе России уникальны из-за аномально низких температур. Это позволяет снизить температуры конденсации, особенно зимой, что может дать прирост (на 20 – 40 %) в выработке электроэнергии по сравнению с ГеоЭС, которые расположены в районах жаркого и умеренного климата. Использование геотермального тепла зимой могло бы обеспечить выработку разнообразных видов энергии для организации различной производственной деятельности. Но для этого геотермальной энергетике, чтобы стать эффективной на территории России требуется решить ряд сложных задач приведенных выше. Использование геотермальных месторождений зимой имеет еще один плюс.
Солёную воду геотермальных источников с большим дебитом зимой можно с минимальными затратами опреснять. Однако если нагревание такого льда производить постепенно, например, за счет энергии Солнца, замерзший между кристалликами пресного льда рассол, перейдет в жидкое состояние и будет стекать раньше, чем начнут таять сами кристаллы пресной воды. Растаявший рассол направляют (стекает) в отдельные резервуары, лед опресняется и при дальнейшем таянии образуется пресная вода, которую отводят в сборный резервуар [8]. При строительстве (возведении) новых солнечный соляных прудов, получение солевых растворов, можно осуществлять в условиях Сибири зимой используя метод факельного намораживания. Известный метод можно использовать по своему не прямому назначению, а для повышения концентрации соли в воде, предназначенной для нижнего слоя пруда. Традиционно, метод факельного намораживания используют для опреснения морских и соленых подземных вод. На морозе их пропускают через дождевальную установку, рядом с которой будет формироваться массив искусственного фирна. Поскольку он хорошо фильтрует воду, соленая вода из него стечет и ее надо будет отвести по каналу или естественному руслу в пруд. Оставшийся фирн окажется практически пресным [9]. Конечно, при интенсивном использовании зимой геотермального месторождения, уже не стадии проектирования зданий и сооружений не следует забывать о преобразовании ими зимой солнечного излучения в тепло (фототермальное преобразование). Оно может быть как пассивным (с использованием пассивных солярных элементов зданий — застекленные фасады, зимние сады), так и активным (с использованием дополнительного технического оборудования). Преимуществом пассивных систем является то, что для их эксплуатации не требуется никакого дополнительного оборудования. Используется солнечный свет, попадающий внутрь здания (сооружения) через окна или прозрачные поверхности. Данную систему следует проектировать с учетом максимального использования поступившей энергии для других помещений. Самым подходящим здесь являются капитальные дома, позволяющие на непродолжительное время аккумулировать избыток энергии. Принципиальным здесь также является вид и регулирование системы отопления. Пассивная система должна составлять со зданием единое гармоничное целое; этого проще всего добиться в новых постройках. Старые здания можно реконструировать (сделать застекленные пристройки, веранды и т. п.). Однако здесь необходимо принимать во внимание риск перегрева здания в летний период, для чего нужно установка соответствующей системы вентиляции, аккумулирования тепла строительными конструкциями.
Энергетическая выгода пассивной системы зависит от способа использования здания — например, дополнительное застекление лоджий экономически выгодно только в том случае, когда она зимой не отапливается. Как видно из изложенного, солнечное излучение и геотермальное тепло могут стать источниками энергии для комбинированных систем энергоснабжения в России, круглогодично обеспечивая важные области быта и производства энергией соответствующего потенциала. Список литературы
1 Муругов В.П. Расширение сферы использования энергии возобновляемых источников // Техника в сельском хозяйстве. 1996. № 2. С 17 – 19. |
Похожие статьи
Солнечные коллекторы. Греем воду солнцем | |
Ежегодное увеличение стоимости энергоресурсов, пагубное их воздействие на климатические условия заставляет человека искать альтернативные источники энергии. Одним из неисчерпаемых источников являет ... Читать полностью |
Геотермальная энергетика сегодня |
Геотермальная энергетика — производство электроэнергии, а также тепловой энергии за счёт энергии, содержащейся в недрах земли.
Преимуществом геотермальной энергетики является ее практиче ... Читать полностью |
Использование солнечной энергии для бесперебойного электроснабжения децентрализованных потребителей России | |
Осадчий Г.Б., инженер
Сегодня в России наблюдается невиданный рост стоимости электроэнергии, потребляемой населением. Кроме ежегодного «планового» повышения её цены на 10 – ... Читать полностью |
Строительное стекло. Все что необходимо знать о стекле (часть 2) | |
Строительное стекло. Понятия и термины (часть 2)
Что мы знаем про строительное стекло? ....Прежде, чем говорить о стекле дальше вспомним кое-что из физики света, итак.
Достигающее Земли с ... Читать полностью |
Теплотехника и ее применение в строительстве | |
Теплотехника — дисциплина, целью которой является изучение всевозможных методик получения, передачи и использования энергии тепла, а также преобразования ее в иные виды энергии, такие как мех ... Читать полностью |
Опубликовать свою статью можно из личного кабинета фирмы.
Зарегистрироваться и получить личный кабинет - здесь.